Skip navigation


University of Central Oklahoma (405) 974-5441 Mathematics & Statistics STEM 246 , Box 129

Education and Certifications

Ph.D., Mathematics, University of Utah, 2012
M.S., Mathematics, University of Utah, 2008
B.A., Mathematics and History, Mount Holyoke College, 2006


Classes Taught

MATH 1513 College Algebra
MATH 2153 Bio-Calculus
MATH 2313 Calculus 1
MATH 2323 Calculus 2
MATH 2333 Calculus 3
MATH 2343 Calculus 4
MATH 3103 Differential Equations
MATH 4483 History of Mathematics
MATH 4910/5910 Partial Differential Equations
MATH 4910/5910 Nonlinear Dynamics and Chaos

Research, Published Work, and Scholarly Activities

Stoll EG, Cone SJ, Lynch SR, Fuquay AT, Bannish BE, Hudson NE. Fluorescent microspheres can affect in vitro fibrinolytic outcomes. PLOS ONE. (2023). 18(4): e0284163. doi: 10.1371/journal.pone.0284163.

Risman RA, Kirby NC, Bannish BE, Hudson NE, Tutwiler V. Fibrinolysis: an illustrated review. Research and Practice in Thrombosis and Haemostasis. (2023). Feb 16;100081. doi: 10.1016/j.rpth.2023.100081,

Risman RA,  Abdelhamid A, Weisel JW, Bannish BE, and Tutwiler V. Effects of clot contraction on clot degradation: A mathematical and experimental approach. Biophysical Journal. (2022). 121(17), 3271-3285.

Lynch SR, Laverty SM, Bannish BE, and Hudson NE. Microscale structural changes of individual fibrin fibers during fibrinolysis. Acta Biomater. (2022). Mar 15;141:114-122. doi: 10.1016/j.actbio.2022.01.006. Epub 2022 Jan 7. PMID: 35007782; PMCID: PMC8898298.

Bannish BE and Hudson NE. The Utility and Potential of Mathematical Models in Predicting Fibrinolytic Outcomes. Curr Opin Biomed Eng. (2021). Dec;20:100337. doi: 10.1016/j.cobme.2021.100337. Epub 2021 Sep 11. PMID: 34957356; PMCID: PMC8694003.

Copos C, Bannish B, Gasior K, Pinals R, Rostami M, and Dawes A. Connecting Actin Polymer Dynamics Across Multiple Scales. In: Segal R, Shtylla B, Sindi S, eds. Using Mathematics to Understand Biological Complexity. Springer. (2021). p. 7-33.

Bannish BE and Laverty SM. Exploring modeling by programming: insights from numerical experimentation. In: Wootton A, series editor. Foundations for Undergraduate Research in Mathematics. Birkhauser. (2020)

Leiderman K, Bannish BE, Kelley MA, and Palmisano AM. Mathematical models of thrombus formation and fibrinolysis. In: Topaz O, editor. Cardiovascular Thrombus: From Pathology and Clinical Presentation to Imaging, Pharmacotherapy and Interventions. Academic Press. Chapter 5, (2018). p. 67-82.

Bannish BE, Chernysh IN, Keener JP, Fogelson AF, and Weisel JW. Molecular and physical mechanisms of fibrinolysis and thrombolysis from mathematical modeling and experiments. Scientific Reports, (2017). 7:6914.

Bannish BE, Keener JP, and Fogelson AF. Modelling Fibrinolysis: a 3D stochastic multiscale model. Math. Med. Biol., (2014). 31(1):17-44.

Bannish BE, Keener JP, Woodbury M, Weisel, JW, and Fogelson AF. Modelling Fibrinolysis: 1D continuum models. Math. Med. Biol., (2014). 31(1):45-64.

The views expressed by UCO faculty and staff on their personal websites and social media pages do not necessarily reflect the positions of the University of Central Oklahoma. UCO faculty and staff are advised to follow the university’s social media guidelines and are expected to conduct themselves in accordance with policies outlined in UCO’s Employee Handbook and/or Faculty Handbook.